Home Team Research Publications Photos Contact

See also Google Scholar, Orcid ID, and the arXiv.

Articles

  1. Second-order coherence across the Brillouin lasing threshold
    E. A. Cryer-Jenkins*, G. Enzian*, L. Freisem, N. Moroney, J. J. Price, A. Ø. Svela,
    K. D. Major, M. R. Vanner
    Optica 10, 1432 (2023) [arXiv:2307.11490]

  2. Cavity quantum optomechanical nonlinearities and position measurement beyond the breakdown of the linearized approximation
    J. Clarke, P. Neveu, K. E. Khosla, E. Verhagen, M. R. Vanner
    Physical Review Letters 131, 053601 (2023) [arXiv:2207.11153]

  3. Two-mode Schrodinger-cat states with nonlinear optomechanics: generation and verification of non-Gaussian mechanical entanglement
    L. A. Kanari-Naish, J. Clarke, S. Qvarfort, M. R. Vanner
    Quantum Science and Technology 7, 035012 (2022) [arXiv:2109.08525]

  4. A Kerr polarization controller
    N. Moroney, L. Del Bino, S. Zhang, M. T. M. Woodley, L. Hill, T. Wildi, V. J. Wittwer, T. Sudmeyer, G.-L. Oppo, M. R. Vanner, V. Brasch, T. Herr, P. Del'Haye
    Nature Communications 13, 398 (2022) [arXiv:2104.13892]

  5. Can the displacemon device test objective collapse models?
    L. A. Kanari-Naish, J. Clarke, M. R. Vanner, E. A. Laird
    AVS Quantum Science 3, 045603 (2021) [arXiv:2110.15180]
    Special Issue: Celebrating Sir Roger Penrose's Nobel Prize

  6. Non-Gaussian mechanical motion via single and multi-phonon subtraction from a thermal state
    G. Enzian*, L. Freisem*, J. J. Price*, A. Ø. Svela*, J. Clarke, B. Shajilal, J. Janousek, B. C. Buchler, P. K. Lam, M. R. Vanner
    Physical Review Letters 127, 243601 (2021) [arXiv:2103.05175]

  7. Master-equation treatment of nonlinear optomechanical systems with optical loss
    S. Qvarfort, M. R. Vanner, P. F. Barker, D. E. Bruschi
    Physical Review A 104, 013501 (2021) [arXiv:2009.02295]

  8. Preparation and verification of two-mode mechanical entanglement through pulsed optomechanical measurements
    P. Neveu, J. Clarke, M. R. Vanner, E. Verhagen
    New Journal of Physics 23, 023026 (2021) [arXiv:2011.10289]

  9. Single-phonon addition and subtraction to a mechanical thermal state
    G. Enzian, J. J. Price, L. Freisem, J. Nunn, J. Janousek, B. C. Buchler, P. K. Lam, M. R. Vanner
    Physical Review Letters 126, 033601 (2021) [arXiv:2006.11599]

  10. Coherent suppression of backscattering in optical microresonators
    A. Ø. Svela, J. M. Silver, L. Del Bino, S. Zhang, M. T. M. Woodley, M. R. Vanner, P. Del'Haye
    Light: Science and Applications 9, 204 (2020) [arXiv:2002.12379]

  11. Mechanical squeezing via fast continuous measurement
    C. Meng, G. A. Brawley, J. S. Bennett, M. R. Vanner, W. P. Bowen
    Physical Review Letters 125, 043604 (2020) [arXiv:1911.06412]

  12. Generating mechanical and optomechanical entanglement via pulsed interaction and measurement
    J. Clarke*, P. Sahium*, K. E. Khosla, I. Pikovski, M. S. Kim, M. R. Vanner
    New Journal of Physics 22, 063001 (2020) [arXiv:1910.09603]

  13. Quantum hypercube states
    L. A. Howard, T. J. Weinhold, F. Shahandeh, J. Combes, M. R. Vanner, A. G. White, M. Ringbauer
    Physical Review Letters 123, 020402 (2019) [arXiv:1811.03011]

  14. Observation of Brillouin optomechanical strong coupling with an 11 GHz
    mechanical mode

    G. Enzian, M. Szczykulska, J. Silver, L. Del Bino, S. Zhang, I. A. Walmsley, P.
    Del'Haye, M. R. Vanner
    Optica 6, 7 (2019) [arXiv:1808.07115]

  15. Growing macroscopic superposition states via cavity quantum optomechanics
    J. Clarke, M. R. Vanner
    Quantum Science and Technology 4, 014003 (2019) [arXiv:1805.09334]

  16. Displacemon electromechanics: how to detect quantum interference in a nanomechanical resonator
    K. E. Khosla, M. R. Vanner, N. Ares, E. A. Laird
    Physical Review X 8, 021052 (2018) [arXiv:1710.01920]

  17. Generation of mechanical interference fringes by multi-photon quantum measurement
    M. Ringbauer, T. J. Weinhold, L. A. Howard, A. G. White, M. R. Vanner
    New Journal of Physics 20, 053042 (2018) [arXiv:1602.05955]

  18. Quantum magnetomechanics: Towards the ultrastrong coupling regime
    E. Romero-Sanchez, W. P. Bowen, M. R. Vanner, K. Y. Xia, J. Twamley
    Physical Review B 97, 024109 (2018) [arXiv:1701.08482]

  19. Quantum optomechanics beyond the quantum coherent oscillation regime
    K. Khosla, G. A. Brawley, M. R. Vanner, W. P. Bowen
    Optica 4, 1382 (2017) [arXiv:1704.07032]

  20. Amplified transduction of Planck-scale effects using quantum optics
    P. Bosso, S. Das, I. Pikovski, M. R. Vanner
    Physical Review A 96, 023849 (2017) [arXiv:1610.06796]

  21. Arbitrary multi-qubit generation
    F. Shahandeh, A. P. Lund, T. C. Ralph, M. R. Vanner
    New Journal of Physics 18, 103020 (2016) [arXiv:1606.06792]

  22. Quantum and classical phases in optomechanics
    F. Armata, L. Latmiral, I. Pikovski, M. R. Vanner, C. Brukner, M. S. Kim
    Physical Review A 93, 063862 (2016) [arXiv:1604.05679]

  23. Nonclassical-state generation in macroscopic systems via hybrid discrete-continuous quantum measurements
    T. J. Milburn, M. S. Kim, M. R. Vanner
    Physical Review A 93, 053818 (2016) [arXiv:1602.01835]

  24. A quantum optomechanical interface beyond the resolved sideband limit
    J. S. Bennett, K. Khosla, L. S. Madsen, M. R. Vanner, H. Rubinsztein-Dunlop, W. P. Bowen
    New Journal of Physics 18 053030 (2016) [arXiv:1510.05368]

  25. Nonlinear optomechanical measurement of mechanical motion
    G. A. Brawley*, M. R. Vanner*, P. E. Larsen, S. Schmid, A. Boisen, W. P. Bowen
    Nature Communications 7, 10988 (2016) [arXiv:1404.5746]

  26. Towards optomechanical quantum state reconstruction of mechanical motion
    M. R. Vanner, I. Pikovski, M. S. Kim
    Annalen der Physik 527, 15 (2015) [arXiv:1406.1013]
    Special Issue: Quantum and Hybrid Mechanical Systems - From Fundamentals to Applications

  27. An opto-magneto-mechanical quantum interface between distant superconducting qubits
    K. Xia, M. R. Vanner, J. Twamley
    Scientific Reports 4, 5571 (2014) [arXiv:1407.2324]
    • Featured: Remote quantum applications, teleportation enabled by calling long distance between superconducting qubits [Phys.org]

  28. Cooling-by-measurement and mechanical state tomography via pulsed optomechanics
    M. R. Vanner, J. Hofer, G. D. Cole, M. Aspelmeyer
    Nature Communications 4, 2295 (2013) [arXiv:1211.7036]

  29. Quantum state preparation of a mechanical resonator using an optomechanical geometric phase
    K. E. Khosla, M. R. Vanner, W. P. Bowen, G. J. Milburn
    New Journal of Physics 15, 043025 (2013) [arXiv:1210.0642]

  30. Quantum state orthogonalization and a toolset for quantum optomechanical phonon control
    M. R. Vanner, M. Aspelmeyer, M. S. Kim
    Physical Review Letters 110, 010504 (2013) [arXiv:1203.4525]

  31. Probing Planck-scale physics with quantum optics
    I. Pikovski, M. R. Vanner, M. Aspelmeyer, M. S. Kim, C. Brukner
    Nature Physics 8, 393 (2012) [arXiv:1111.1979]
    • Press Release: Looking at quantum gravity in a mirror [pdf]
    • Featured: Quantum optics may remove the uncertainty about quantum gravity [ars technica]
    • Featured: An optical probe of quantum gravity? [physics today]

  32. Selective linear or quadratic optomechanical coupling via measurement
    M. R. Vanner
    Physical Review X 1, 021011 (2011) [arXiv:1106.0763]

  33. Pulsed quantum optomechanics
    M. R. Vanner, I. Pikovski, G. D. Cole, M. S. Kim, C. Brukner, K. Hammerer, G. J. Milburn, M. Aspelmeyer
    Proc. Natl. Acad. Sci. USA 108, 16182 (2011) [arXiv:1011.0879]

  34. Phonon-tunnelling dissipation in mechanical resonators
    G. D. Cole*, I. Wilson-Rae*, K. Werbach, M. R. Vanner, M. Aspelmeyer
    Nature Communications 2, 231 (2011) [arXiv:1007.4948]
    • Press Release: How long does a tuning fork ring? [pdf]

  35. Observation of strong coupling between a micromechanical resonator and an optical cavity field
    S. Groblacher, K. Hammerer, M. R. Vanner, M. Aspelmeyer
    Nature 460, 724 (2009) [arXiv:0903.5293]

  36. Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity
    S. Groblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, M. Aspelmeyer
    Nature Physics 5, 485 (2009) [arXiv:0901.1801]
  37. Broadband optical delay with a large dynamic range using atomic dispersion
    M. R. Vanner, R. J. McLean, P. Hannaford, A. M. Akulshin
    J. Phys. B: At. Mol. Opt. Phys. 41, 051004 (2008) [arXiv:0711.4172]

  38. High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber
    H. Hubel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Loruenser, A. Poppe, A. Zeilinger
    Optics Express 15, 7853 (2007) [arXiv:0801.3620]

  39. Fabrication and characterization of face-centered-cubic void dots photonic crystals in a solid polymer material
    G. Zhou, M. J. Ventura, M. R. Vanner, M. Gu
    Applied Physics Letters 86, 011108 (2005)

  40. Use of ultrafast-laser-driven microexplosion for fabricating three-dimensional void-based diamond lattice photonic crystals in a solid polymer material
    G. Zhou, M. J. Ventura, M. R. Vanner, M. Gu
    Optics Letters 29, 2240 (2004)

Peer-Reviewed Proceedings

  1. Megahertz monocrystalline optomechnaical resonators with minimal dissipation
    G. D. Cole, I. Wilson-Rae, M. R. Vanner, S. Groblacher, J. Pohl, M. Zorn. M. Weyers, A. Peters, M. Aspelmeyer
    Hong Kong SAR, China, 24-28 January 2010, TP133 [pdf]
    Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), art. no. 5442339, pp. 847-850 (2010)

  2. Fabrication of three-dimensional void photonic crystals using ultrafast-laser-driven microexplosion in a solid polymer material
    G. Zhou, M. J. Ventura, M. R. Vanner, M. Gu
    Proc. SPIE 5635, 129 (2005)

News and Views

  1. Mechanical quantum systems controlled – Nature News & Views
    M. R. Vanner
    Nature 563, 39 (2018) [pdf]

Patents and Intellectual Property

  1. An opto-magneto-mechanical quantum interface between distant superconducting qubits
    K. Xia, M. R. Vanner, J. Twamley
    PCT: WO2015127498 A1 (2015)

Technical Articles

  1. Fabricating 3D Microstructures and High-Resolution Imaging Using NI LabVIEW
    M. R. Vanner, M. Straub, M. Gu
    Invited National Instruments customer solutions article (2005)

Go back to top